models
DDM(*, sigma_min=0.05, sigma_max=0.5, is_periodic=True, mlp_network, key, n_sample_steps=100, n_epochs=100, batch_size=128, wandb_log=False, gamma_energy_regulariztion=1e-05, fourier_features=1, warmup_steps=50, box_size=1.0, symmetric=False)
dataclass
¶
Bases: LinearPriorSchedule
, UniformPrior
, ExponetialVarianceNoiseSchedule
, DefaultDataClass
Energy-based denoising diffusion model for periodic data on [0, 1].
DrivenDDM(*, sigma_min=0.05, sigma_max=0.5, is_periodic=True, mlp_network, key, n_sample_steps=100, n_epochs=100, batch_size=128, wandb_log=False, gamma_energy_regulariztion=1e-05, fourier_features=1, warmup_steps=50, box_size=1.0, symmetric=False, pbc_bins=20, diffusion=lambda x: 1.0)
dataclass
¶
Bases: LinearForceSchedule
, DDM
EB-based denoising diffusion model for driven periodic data on [0, 1].