datasets
This submodule provides a suite of one-dimensional potential energy landscapes and their corresponding biased-force variants for use in score-based and diffusion-based modeling experiments. Each dataset class encapsulates a specific analytic potential function and supporting machinery to generate samples, compute energies, and (where applicable) apply an external biasing force.
Classes: WPotential1D A symmetric double-well (W-shaped) potential in one dimension. BiasedForceWPotential1D The WPotential1D with an added constant biasing force term. ToyMembranePotential1D A simple membrane-like potential featuring a central barrier and flanking wells. BiasedForceToyMembranePotential1D The ToyMembranePotential1D augmented with an external biasing force. ToyMembrane2Potential1D An extended membrane potential with two barriers and three wells. BiasedForceToyMembrane2Potential1D The ToyMembrane2Potential1D with an additional biasing force. ToyMembrane3Potential1D A higher-order membrane potential featuring three barriers and four wells. BiasedForceToyMembrane3Potential1D The ToyMembrane3Potential1D augmented with an external biasing force.
All classes expose a consistent interface for: • Sampling data points from the potential's Boltzmann distribution. • Computing potential energies and (optional) biasing forces. • Integrating seamlessly with score-based learning workflows.
Usage example:
dataset = WPotential1D(num_samples=10000, temperature=1.0)
x, energy = dataset.sample()
BiasedForceWPotential1D(*, x=lambda: jnp.linspace(0, 1, 100)(), gamma=lambda x: 1.0, bias)
dataclass
¶
Bases: WPotential1D
Biased-force dataset for the 1D W-potential.
Extends WPotential1D by adding a bias force \(b(x,t)\).
Parameters:
-
bias
(callable
) –Bias force function \(b(x,t)\).
Methods:
-
sample
–Simulate biased dynamics and return samples.
sample(key, dt=0.0001, n_steps=int(100000.0), n_samples=2048, beta=1.0)
¶
Sample positions with bias force via Euler-Maruyama.
Source code in src/fpsl/datasets/datasets.py
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
BiasedForceToyMembranePotential1D(*, x=lambda: jnp.linspace(0, 1, 100)(), gamma=lambda x: 1.0, bias)
dataclass
¶
Bases: ToyMembranePotential1D
, BiasedForceWPotential1D
Biased-force dataset for the toy membrane potential.
BiasedForceToyMembrane2Potential1D(*, x=lambda: jnp.linspace(0, 1, 100)(), gamma=lambda x: 1.0, bias)
dataclass
¶
Bases: ToyMembrane2Potential1D
, BiasedForceWPotential1D
Biased-force dataset for the second toy membrane potential.
BiasedForceToyMembrane3Potential1D(*, x=lambda: jnp.linspace(0, 1, 100)(), gamma=lambda x: 1.0, bias)
dataclass
¶
Bases: ToyMembrane3Potential1D
, BiasedForceWPotential1D
Biased-force dataset for the third toy membrane potential.
WPotential1D(*, x=lambda: jnp.linspace(0, 1, 100)(), gamma=lambda x: 1.0)
dataclass
¶
Bases: DataSet
Dataset for the 1D W-potential.
This class integrates the 1D W-potential \(U(x)\) using the overdamped Langevin dynamics (Euler-Maruyama).
Parameters:
-
x
((array_like, shape(dim1))
, default:linspace(0,1,100)
) –Grid points for plotting the potential.
-
gamma
(callable
, default:lambda x: 1.0
) –Friction function \(\gamma(x)\), defaults to constant 1.
Methods:
-
potential
–Returns \(U(x)\) from w_potential_1d.
-
plot_potential
–Plot \(U(x)\) vs x.
-
sample
–Simulate and return samples modulo 1.
Returns:
-
samples
((ndarray, shape(n_samples, 1))
) –Final positions of particles samples.
potential(x, t)
¶
Evaluate the W-potential at x.
Parameters:
-
x
((array_like, shape(1))
) –Position in [0,1].
-
t
(float
) –Time (ignored for static potential).
Returns:
-
U
(float
) –Potential energy \(U(x)\).
Source code in src/fpsl/datasets/datasets.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
plot_potential(x=None, title='Toy W-Potential')
¶
Plot the potential energy curve.
Parameters:
-
x
(array_like
, default:None
) –Grid points; defaults to self.x.
-
title
(str
, default:'Toy W-Potential'
) –Plot title.
Returns:
-
ax
(Axes
) –Matplotlib Axes instance with the plot.
Source code in src/fpsl/datasets/datasets.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
sample(key, dt=0.0001, n_steps=int(100000.0), n_samples=2048, beta=1.0)
¶
Sample positions via Euler-Maruyama integration.
Parameters:
-
key
(JaxKey
) –PRNG key.
-
dt
(float
, default:0.0001
) –Time step size.
-
n_steps
(int
, default:int(100000.0)
) –Number of heat-up steps.
-
n_samples
(int
, default:2048
) –Number of independent trajectories.
-
beta
(float
, default:1.0
) –Inverse temperature.
Returns:
-
samples
((ndarray, shape(n_samples, 1))
) –Final positions modulo 1.
Source code in src/fpsl/datasets/datasets.py
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
ToyMembranePotential1D(*, x=lambda: jnp.linspace(0, 1, 100)(), gamma=lambda x: 1.0)
dataclass
¶
Bases: WPotential1D
Dataset for a toy membrane potential in 1D.
Overrides potential with \(U(x)=\mathrm{toy\_membrane\_potential\_1d}(x)\). Inherits sampling and plotting behavior from WPotential1D.
potential(x, t)
¶
Evaluate the toy membrane potential at x.
Source code in src/fpsl/datasets/datasets.py
267 268 269 270 271 272 273 |
|
plot_potential(x=None, title='Toy Membrane Potential')
¶
Plot the toy membrane potential curve.
Source code in src/fpsl/datasets/datasets.py
275 276 277 278 279 280 281 |
|
ToyMembrane2Potential1D(*, x=lambda: jnp.linspace(0, 1, 100)(), gamma=lambda x: 1.0)
dataclass
¶
Bases: WPotential1D
Dataset for a second toy membrane potential in 1D.
Overrides potential with \(U(x)=\mathrm{toy\_membrane2\_potential\_1d}(x)\).
potential(x, t)
¶
Evaluate the second toy membrane potential at x.
Source code in src/fpsl/datasets/datasets.py
303 304 305 306 307 308 309 |
|
plot_potential(x=None, title='Toy Membrane 2 Potential')
¶
Plot the second toy membrane potential curve.
Source code in src/fpsl/datasets/datasets.py
311 312 313 314 315 316 317 |
|
ToyMembrane3Potential1D(*, x=lambda: jnp.linspace(0, 1, 100)(), gamma=lambda x: 1.0)
dataclass
¶
Bases: WPotential1D
Dataset for a third toy membrane potential in 1D.
Overrides potential with \(U(x)=\mathrm{toy\_membrane3\_potential\_1d}(x)\).
potential(x, t)
¶
Evaluate the third toy membrane potential at x.
Source code in src/fpsl/datasets/datasets.py
337 338 339 340 341 342 343 |
|
plot_potential(x=None, title='Toy Membrane 3 Potential')
¶
Plot the third toy membrane potential curve.
Source code in src/fpsl/datasets/datasets.py
345 346 347 348 349 350 351 |
|